
Enhancing Label Representations with Relational Inductive Bias
Constraint for Fine-Grained Entity Typing

Jinqing Li1,2 , Xiaojun Chen1∗ , Dakui Wang1 and Yuwei Li1,2
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{lijinqing, chenxiaojun,wangdakui,liyuwei}@iie.ac.cn

Abstract

Fine-Grained Entity Typing (FGET) is a task that
aims at classifying an entity mention into a wide
range of entity label types. Recent researches im-
prove the task performance by imposing the label-
relational inductive bias based on the hierarchy of
labels or label co-occurrence graph. However, they
usually overlook explicit interactions between in-
stances and labels which may limit the capability of
label representations. Therefore, we propose a nov-
el method based on a two-phase graph network for
the FGET task to enhance the label representation-
s, via imposing the relational inductive biases of
instance-to-label and label-to-label. In the phase I,
instance features will be introduced into label rep-
resentations to make the label representations more
representative. In the phase II, interactions of labels
will capture dependency relationships among them
thus make label representations more smooth. Dur-
ing prediction, we introduce a pseudo-label genera-
tor for the construction of the two-phase graph. The
input instances differ from batch to batch so that
the label representations are dynamic. Experiments
on three public datasets verify the effectiveness and
stability of our proposed method and achieve state-
of-the-art results on their testing sets.

1 Introduction
FGET task, which aims at classifying an entity mention in-
to a wide range of entity label types according to its con-
text, plays an important role in many applications, such as
coreference resolution [Durrett and Klein, 2014], relation
extraction [Yaghoobzadeh et al., 2016], question answering
[Yavuz et al., 2016], knowledge base population [Carlson et
al., 2010], etc. Since an entity may contain multiple label-
s in a certain text, the task can be regarded as a multi-label
multi-class problem. For example, given the sentence “Pe-
ter is Tom’s father who works as an English teacher” and the
target mention “Peter”, we can infer it belongs to labels of
{people,male, teacher}.

∗Contact Author

Figure 1: Interactions between instances and labels. The black arrow
denotes the label hierarchy and the blue arrow represents the entity
contains the labels. The words in purple font directly reflect the
characteristics of the corresponding labels.

Recent researches improve the task performance by impo-
sing the label-relational inductive bias based on the hierar-
chy of labels or label co-occurrence graph, as shown at
the top of Figure 1. Some works [Shimaoka et al., 2017;
Ren et al., 2016; Xu and Barbosa, 2018] explicitly exploit
the inherent hierarchy of labels to share parameters between
parent- and sub-labels, or design hierarchy-aware loss func-
tions, while [Chen et al., 2020] employs a coarse-to-fine de-
coder to search candidate labels on the hierarchy label tree.
[Xiong et al., 2019] firstly proposes to build a label co-
occurrence graph and then use graph convolution propagation
on it, to capture the dependency relationships among labels.
Essentially, the graph structure (including hierarchy) is a kind
of relational inductive bias in standard deep learning compo-
nents, which imposes constraints on relationships and in-
teractions among nodes in a learning process [Battaglia et
al., 2018]. It is beneficial to impose the constraint of label-to-
label relational inductive bias to the label optimization repre-
sentations, as [Xiong et al., 2019] proven. However, the ex-
isting works just consider the hierarchy among labels for task
optimization, but no literature considers the explicit influence
of instance features on label representations. For example, as
shown in Figure 1, if we introduce the instance information
(like the keyword information in purple font) to label, we can
infer the labels of the instance easily. For a label type, its rep-
resentation should cover as many features of the instances that
belong to the label as possible to make the label more repre-
sentative. Therefore, how to extract the instance features for
the label representation is a problem worth considering.

Based on the above observation, we provide a novel
method to enhance the label representations by imposing a

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3843

new relational inductive bias of instance-to-label. Concretely,
we implement the above idea via a two-phase graph network
with nodes of instances and labels. In phase I, we explicitly
introduce the features of instances into the label representa-
tions via the instance-label sub-graph and get the instance-
aware label representations. Since imposing label relational
inductive bias has been proven to be helpful, in phase II, we
use the label-label sub-graph to capture dependency relation-
ships among labels and get the dependency-aware label rep-
resentations. During prediction, the ground truth labels are
not available, therefore we design a pseudo-label generator to
generate pseudo labels for testing instances. Note that, the
input instances differ from batch to batch so that the label
representations are dynamic.

Our contributions are summarized as follows:
• We propose to impose graph relational inductive biases

of instance-to-label and label-to-label to enhance the la-
bel representations. To our best knowledge, we are the
first to combine the two biases at the same time.
• We design a two-phase graph network to impose the

above relational inductive bias constraints. The graph
is divided into two sub-graphs for different representa-
tion perspectives: instance-label sub-graph for instance-
aware label representations and label-label sub-graph for
dependency-aware label representations.
• We demonstrate the effectiveness of the proposed

method by comprehensive experiments. The experimen-
tal results on three datasets outperform other state-of-
the-art methods.

2 Related Work
In this work, we use Graph Neural Networks(GNNs) to en-
hance label representations under two kinds of graph rela-
tional inductive biases for FGET task, so we will introduce
the related works of the two aspects.

2.1 Graph Neural Networks
Graphs can be used to represent network structures. [Kipf
and Welling, 2017] proposes Graph Convolutional Net-
work(GCN) which performs convolutional operation on
graph-structured data. GCN has recently achieved appealing
performance in node classification [Kipf and Welling, 2017],
recommendation system [Wang et al., 2019b], and so on. It
can pass information among neighbor nodes and capture n-
odes’ dependencies. Graph Attention Network(GAT) pro-
posed by [Velickovic et al., 2017] extends the GCN, in which
the weights of neighbor nodes are different. [Wang et al.,
2019a] recursively propagates the information from neigh-
bors of a node to refine the node’s embedding and employs
an attention mechanism to discriminate the importance of the
neighbors. In our case, different instance features contribute
to the label representations differently while GAT can capture
the difference.

2.2 Fine-Grained Entity Typing
Entity typing (ET) is a sub-task of name entity recogniza-
tion [Collins and Singer, 1999; Jiang and Zhai, 2006; Rati-
nov and Roth, 2009]. The earlier ET task, as a single-label

multi-class question, classifies entities roughly into several
categories. However, in recent years, finer-grained entity ty-
ping datasets are widely raised, which include dozens or hun-
dreds of label types like [Weischedel and Brunstein, 2005;
Ling and Weld, 2012], etc. The challenge is how to model
the label representations to make similar labels close in their
feature space while keeping them away if they are conflic-
ting. [Ren et al., 2016] derives label correlation based on two
signals: the given label hierarchy and the shared entities be-
tween two labels in KB. [Xu and Barbosa, 2018] proposes a
variant of the cross-entropy loss function and introduces hie-
rarchical loss normalization which can understand the label
hierarchy and alleviate the negative effect of overly-specific
labels, but is difficult to adapt to a non-hierarchical label set.
[Chen et al., 2019] applies label propagation (LP) on label
graph to estimate their label distribution. [López et al., 2019]
exploits hyperbolic embeddings to capture hierarchical rela-
tions between mentions in context and their target labels in a
shared vector space. [Zhang et al., 2020] exploits probabilis-
tic automatic relabeling module to handling noisy samples in
training data based on [Xu and Barbosa, 2018]. [Lin and Ji,
2019] predicts a low-dimensional vector that encodes latent
label features and reconstructs the label vector from the latent
representation. [Chen et al., 2020] also takes the explicit hie-
rarchy into account, by multi-level learning to rank approach
that ranks the candidate labels conditioned on the given entity
mention. [Xiong et al., 2019] imposes label-relational induc-
tive bias via GCN propagation on label co-occurrence graph
for the first time. Some other works introduce external know-
ledge like entity linking in [Dai et al., 2019] or use advanced
pre-training/fine-tuning methods like [Shi et al., 2020] which
proposes a regularization module based on virtual adversarial
training, also achieve great improvement. The above methods
improve the performance by optimizing the instance repre-
sentations or label representations separately. Different from
them, we will explore the influence of instance features on
label representations in this work.

3 Methodology
The proposed method consists of three main components:
mention features extractor, instance-aware label encoder, and
pseudo-label generator, as shown in Figure 2. The mention
features extractor encodes the mention span and its context
via attention mechanism to get context-aware mention repre-
sentation. For the instance-aware label encoder, we design a
two-phase heterogeneous graph to extract the learned features
from instances to labels and then capture the dependency re-
lationships among labels. During prediction, we employ the
pseudo-label generator to generate pseudo labels for the tes-
ting instances to assist in constructing the two-phase graph.

3.1 Mention Features Extractor
Given an example {m, c, y}, where m, c, y denote entity
mention span, context, and ground truth labels, the mention
features extractor is used to encode the context-aware repre-
sentation of mention via encoding the mention span and its
context respectively. Note that we define {m, c} as an in-
stance here.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3844

Lily played leading role in this movie.

FFN

Transformer

Attention

Embeddings

Attention

Embeddings

+

person doctorartistactor

coach

hidden states person doctorartistactor

coach

person doctorartistactor

coach

phase 1

phase 2

+

person artist actor

.

.

ground
truth
labels

dot
product

0.9
person

0.8
artist

0.7
actor

extract feature from
instances to labels

capture dependency
between labels

Mention features Extractor Pseudo-Label Generator Instance-Aware Label Encoder

true labels
training

max

... ...

...

pseudo labels
training/testing

Figure 2: The overview of our proposed method.

Representation of mention. We leverage the attention-
weighted sum of mention word embeddings as the semantic
representation of the mention span:

ra = Attention({ei}) (1)
rm = tanh(FFN(ra)) (2)

where Attention(.) is an attention-weighted sum operation,
FFN(.) is Feed Forward Network, tanh(.) is hyperbolic
tangent activation function, and ei ∈ Rd is the embedding
of ith word where i ∈ [0, 1, ..., Lm], Lm is the length of the
mention and d is the dimension of word embedding.
Representation of context. To keep the full context infor-
mation of the mention, we apply a Transformer encoder to
encode the whole context sequence. After a feed forward net-
work and activation function, the final representation of con-
text can be calculated by the attention-weighted sum of the
hidden states. The forward propagation process is formulated
as follows:

{hi} = Transformer({ei}) (3)

hf
i = tanh(FFN(hi)) (4)

rc = Attention({hf
i }) (5)

where Transformer(.) is staked Transformer layers, and
ei ∈ Rd is the embedding of ith word where i ∈ [0, 1, ..., Lc],
Lc is the length of the context.

The final feature representation of the mention is the
weighted sum of rm and rc:

r = (1− α) ∗ rm + α ∗ rc (6)

where α is a hyper-parameter.

3.2 Instance-Aware Label Encoder
Our work focuses on enhancing label representation via
imposing relational inductive biases of instance-to-label and
label-to-label. We implement that via constructing a two-
phase graph dynamically and then separating two sub-graphs

to perform graph operations in two phases: instance-label
sub-graph for extracting instance-aware label representations,
and label-label sub-graph for dependency-aware label repre-
sentations.

Dynamic graph construction. The two-phase graph con-
tains instance nodes and label nodes. We construct the graph
dynamically for every training or prediction batch. Specifi-
cally, the two-phase graph are divided into two sub-graphs:
the instance-label sub-graph and the label-label sub-graph.
For the instance-label sub-graph, we define the adjacent ma-
trix as follows:

A1
ij =

{
1, if instance i belongs to label type j,
0, otherwise

(7)

in whichA1
ii = 1 for self-connection. For the label-label sub-

graph, we use the statistical results from training dataset to
build the graph, i.e., the co-occurrence results. The adjacent
matrix is defined as:

A2
ij = I(i, j) (8)

where I(.) is an indicator function, I(i, j) = 1 if label types i
and j co-exist in an instance, otherwise 0. Take into account
that the transfer probability or dependency level varies from
label to label, we also define an edge weight matrix for the
sub-graph according to the co-occurrence frequency of them:

W l
ij =

count((i, j))

count(i)
(9)

where i, j is label nodes, count(.) counts the cumulative
number of occurrence and W l

ij indicates the transfer ratio
from label i to j. The W l is asymmetric as the cumulative
numbers of labels i and j are usually different. Note that:

Nl∑
j=1

W l
ij ≥ 1 (10)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3845

where the Nl is the size of label set. For example: if the label
zoo (label i) appears, the label location (label j) is sure to
appear so that W l

ij = 1 while the opposite is not necessarily
true and W l

ji < 1.
Phase I: Instance-aware label representations. A label
type usually corresponds to numerous instances whose fea-
tures reflect those of the label. Therefore, capturing the repre-
sentation associations between labels and instances can make
the label representations more representative. Considering
an entity mention in a certain context may belong to sever-
al label types, we model the association difference by using
GAT propagation with adjacent matrix A1 on the instance-
label sub-graph to get instance-aware label representations.
Formally,

V = [T0;B] (11)

denotes the initial node features where T0 ∈ Rd is random-
ly initialized label representations, and B = {r} is the set
of instance features. We follow GAT propagation rule on
the instance-label sub-graph as defined in [Velickovic et al.,
2017] to get instance-aware label representations V ′ = {v′i}.
After GAT propagation, the label representations Tgat:

T ′gat = {v′i}i∈[0,...,Nl] (12)

Tgat = T ′gat + T0 (13)
are regards as the initial node features of the next phase. To
make better use of historical information and accelerate con-
vergence of network, we introduce the residual connection
after the GAT propagation, as formulated in Formula (13).
Phase II: Dependency-aware label representations. The
phenomenon of label co-occurrence in the same instance sug-
gests that there exists a certain conceptual similarity or hie-
rarchical dependency (in our case) among labels. To capture
the dependency relationships among labels to make label rep-
resentations more smooth for those low-resource labels, we
exploit GCN propagation on the label-label sub-graph. On
the basis of statistical results of W l (after normalization) and
A2, we follow the GCN propagation rule defined in [Xiong
et al., 2019] to get new label representations Tgcn. Here we
also use a residual connection, so the final representations of
labels can be formulated as:

T = Tgcn + Tgat. (14)
Note that one layer of GCN is enough here as the two- or
multi-hops may introduce irrelevant even conflicting predic-
tion, such as male← person→ female. If applying two-
layer GCNs, the contradictory prediction may be generated
with both labels male and female. In traditional methods,
labels with a small number of instances are updated less fre-
quently and also easy to overfit those instances. With GNNs
propagation, the update of adjacent label nodes will also af-
fect the representations of the labels with fewer instances.
Therefore, the label representation is no longer bound only
by the instances it involves, but also by its neighbors.

We calculate the dot product of instance representation r
and T followed by a sigmoid activation function σ(.), as the
similarity score:

y′ = σ(r · T). (15)

Then we apply a threshold thd, which is also a hyper-
parameter, to y′ to obtain the prediction results of our method.

3.3 Pseudo-Label Generator
For training instances, there are ground truth labels of entity
mentions while not for the testing ones. To construct the two-
phase graph for prediction, we design a pseudo-label gene-
rator to generate pseudo labels for testing instances. As de-
scribed above, the context representation of a mention is the
weighted sum of context hidden states. Some keywords play
major roles in the overall representation of context, so we
make full use of the words in context to obtain pseudo labels:

ri = (1− α) ∗ rm + α ∗ hi (16)

yi
p = σ(ri · T) (17)

yp = max pooling([y0
p; ...;y

Lc−1
p]) (18)

where hi is the ith hidden state of context and
max pooling(.) is max pooling operation. Then we
can obtain the pseudo label set from yp where yp,i > thd.
However, this will lead to inconsistency between training
and testing instances because of using ground truth labels for
training but pseudo labels for testing. We solve the problem
via: i) proportionally replacing (with ratio of β) ground truth
labels with pseudo labels during training; ii) adding loss on
pseudo and ground truth labels to force the pseudo-label
generator to generate labels that match the ground truth ones.
Therefore the whole loss can be formulated as:

Lp(yp|(m, c; θ),y) = BCE(yp|(m, c; θ),y) (19)

Lg(y
′|(m, c; θ),y) = BCE(y′|(m, c; θ),y) (20)

L = Lg + γ ∗ Lp (21)

where Lp is the loss of pseudo labels, Lg is the loss of pre-
diction result, L is the overall loss, γ = 1 is a weight hyper-
parameter, and BCE(.) is binary cross entropy loss which is
widely used in the multi-label multi-class task.

4 Experiments
4.1 Datasets
We conduct experiments on datasets of OntoNotes [Gillick
et al., 2014], FIGER [Ling and Weld, 2012] and BBN
[Weischedel and Brunstein, 2005].
OntoNotes. The OntoNotes dataset samples sentences
from newswire documents contained in the OntoNotes cor-
pus. The entities are mapped to Freebase types via DBpedia
Spotlight. The testing data is manually annotated by [Gillick
et al., 2014]. There are 89 labels with 3-level ontology.
FIGER. The FIGER dataset consists of sentences from the
Wall Street Journal annotated by [Ling and Weld, 2012]. The
training data is annotated using DBpedia Spotlight as well
and contains 113 labels with 2-level ontology.
BBN. The BBN dataset is composed of sentences from
some of the Penn Treebank corpus of Wall Street Journal
texts. It was automatically labeled via distant supervision by
mapping the entities to Freebase types. The testing data con-
sists of news reports manually labeled by [Weischedel and
Brunstein, 2005]. There are 47 labels with 2-level ontology.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3846

Methods OntoNotes FIGER BBN
Mi-F1 Ma-F1 ACC Mi-F1 Ma-F1 ACC Mi-F1 Ma-F1 ACC

AttentiveNER[Shimaoka et al., 2016] 0.649 0.710 0.517 0.754 0.790 0.597 - - -
AFET[Ren et al., 2016] 0.647 0.711 0.551 - - - 0.735 0.727 0.670
AFGET[Lin and Ji, 2019] 0.773 0.829 0. 638 0.781 0.793 0.559 0.781 0.793 0.559

CLCS[Chen et al., 2019] 0.720 0.778 0.628 - - - 0.805 0.807 0.747
LabelGCN[Xiong et al., 2019] 0.722 0.778 0.596 0.742* 0.775* 0.623* 0.742* 0.747* 0.584*
FGET-RR[Ali et al., 2020] 0.685 0.743 0.577 0.805 0.847 0.710 0.823 0.819 0.703
HET[Chen et al., 2020] 0.681 0.730 0.587 0.808 0.826 0.691 0.805 0.797 0.752
NFETC-AR[Zhang et al., 2020] 0.730 0.788 0.640 0.801 0.832 0.701 0.815 0.814 0.767
Pseudo-label Generator 0.746 0.801 0.618 0.769 0.794 0.632 0.763 0.761 0.596
Our method(GAT-GCN) 0.792 0.845 0.651 0.844 0.877 0.706 0.860 0.876 0.699
–w/o GCN(Phase I: GAT-only) 0.778 0.830 0.640 0.845 0.867 0.730 0.827 0.844 0.644
–w/o GAT(Phase II: GCN-only) 0.761 0.813 0.618 0.774 0.809 0.636 0.779 0.778 0.598

Table 1: Testing results on the OntoNotes/FIGER/BBN testing sets. GAT-GCN method denotes the complete method we propose. GCN-only
method represents we just use GCN propagation on label-label sub-graph while use only GAT propagation on instance-label sub-graph for
GAT-only method. The testing batch size is set to 300, 400, 200 for OntoNotes, FIGER, and BBN respectively. * denotes that we rerun the
publicly available code of the work since it did not evaluate on the two datasets. - represents not run on the specific dataset.

4.2 Baselines
To be fair, we compare our method with only those do not use
external information like entity linking or pre-training&fine-
tuning, as introduced in Section 2.2: methods using atten-
tion mechanism like [Ren et al., 2016; Shimaoka et al., 2016;
Lin and Ji, 2019] and methods using graph (or hierarchy) like
[Chen et al., 2019; Xiong et al., 2019; Chen et al., 2020;
Ali et al., 2020; Zhang et al., 2020].

4.3 Experimental Settings
In our experiments, we use the pre-trained 5.5B ELMo1 as
our word embeddings without fine-tuning. The dimension
of word embeddings is 1024. We set the hyper-parameters
of the Transformer as follows: encoder of 1 layer, 1024
dimension for the feed-forward network, 8 heads, and 0.1
for dropout. The max lengths are set to 10 for mentions
and 50 for contexts of mentions, for all 3 datasets. Then
we map the dimension of the representations of mention
and context to 200. For the hyper-parameter α, the sum
weight of representations of mention and context, is set to
0.3, 0.3, 0.8 for OntoNotes/FIGER/BBN respectively. For the
replacing ratio of pseudo labels β , is set to 0.2, 0.2, 0.075 for
OntoNotes/FIGER/BBN respectively. The train batch size is
200. Maximum-iteration is set to 10000. We explore the best
result in the range of [0.5,0.8] with stride 0.1 for thd.

4.4 Result analysis
Following prior works, we evaluate our method using me-
trics: strict accuracy (ACC), macro-average F1-score (Ma-
F1), and micro-average F1-score (Mi-F1).

Overall Results. Table 1 shows the overall results of our
method compared to other methods on OntoNotes, FIGER,
and BBN respectively. Our method achieves the best perfor-
mance on most evaluation metrics by a large margin, except

1https://allennlp.org/elmo

Dataset Methods Mi-F1 Ma-F1 ACC

OntoNotes GCN-only 0.761 0.813 0.618
GAT-GCN-static 0.751 0.806 0.612

FIGER GCN-only 0.774 0.809 0.636
GAT-GCN-static 0.754 0.787 0.601

BBN GCN-only 0.779 0.778 0.598
GAT-GCN-static 0.761 0.762 0.566

Table 2: Testing results on 3 testing sets comparing GCN-only and
GAT-GCN-static methods. GAT-GCN-static denotes that when pre-
diction, we calculate the logit labels with the label representations
generated by the last training batch.

for the strict accuracy for BBN. The reason may be that the la-
bel set is smaller and the co-occurrence graph is sparser than
the other two datasets which weaken the effect of the label-to-
label relational bias constraint. The testing result on the BBN
dataset demonstrates the necessity of imposing instance-to-
label relational inductive bias but also reveals the limitation
of this method, that is, the generalization of labels with sparse
graph structure is limited.

Static label representations results. As the instance-
aware label representations are dynamic, we explore the GAT-
GCN-static method for comparison. As shown in Table 2, the
GAT-GCN-static method even performs worse than the GCN-
only method. Obviously, more extra parameters introduced
in the GAT process do not make the performance better. T-
wo reasons here: i) the label representations used are gene-
rated by the last training batch, so they overfit the training
instances; ii) no testing instance feature is fed into the label
representations. The second reason actually matters. Since
the training process is the same as before, the method will
eventually converge to the same level as before. In the ab-
sence of overfitting of the model, the testing performance de-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3847

https://allennlp.org/elmo

Figure 3: Testing results of different number of involving instances
(batch size) for OntoNotes and FIGER.

grades due to the instance-independent label representations.

The feasibility of pseudo-label generator. we also explore
pseudo-label generator separately about its feasibility. Note
that the training process is consistent with the previous exper-
iments, which means, the loss is still calculated by the normal
prediction result as before, but during prediction, we use the
generated result from the pseudo-label generator to evaluate
all the metrics. The testing results are shown in the fourth
row from the bottom of Table 1. As the results suggested,
the pseudo-label generator performs worse than the complete
method but better than some of the baseline methods which
proves the feasibility of the pseudo-label generator. The re-
sults also suggest that the introduction of the pseudo-label
generator does not offer a direct promotion to the overall per-
formance of the proposed method.

The impact of involving instance number. Because of the
dynamic label representations, the number of involving in-
stances may have an impact on the label representations and
thus affect the stability of the testing performance. We con-
duct a set of experiments to test the impact, as shown in Fig-
ure 3. The results show that the number of testing instances
will lead to slight fluctuations on some metrics, especially for
the FIGER testing set. For the training data of FIGER, there
are about 36% mentions with noisy labels because of distant
supervision annotation while just about 27% for OntoNotes
and 24% for BBN. Excessive noise data leads to prediction
bias for the model which results in a worse impact on the
testing performance because more clean testing instances are
needed to correct the label representations. The results on the
OntoNotes testing set are almost consistent as the number of
instances changes because of the cleaner training data.

Ablation Results. While achieving significant improve-
ments on all datasets, it is still not clear which kind of re-
lational inductive bias constraint is more important. We set
up ablation experiments to explore the role of the two con-
straints. As shown in the last two rows of Table 1, the perfor-
mance of GAT-only method is much better than the GCN-only
method especially on the FIGER dataset, which demonstrate
our claim again that the instance features reflect those of the
labels, i.e., the instance-to-label relational inductive bias is
much stronger. So far, our core point has been proved.

Figure 4: The visualization of label representations with t-SNE for
OntoNotes. Note that, Before GAT-GCN(the top) visualizes T0 in
GAT-GCN method.

Visualization for Label Representations. We visualize
the label representations of 3 cases, as shown in Figure 4.
The top one shows the representations of the initial T0 of
GAT-GCN method, which can only learn something general.
GCN-only(the middle) and GAT-GCN(the bottom) methods
significantly separates the labels into four clusters, but the
GAT-GCN can lead to more compact clusters (like cluster /lo-
cation). The effectiveness of our method is proved to some
extent.

5 Conclusion
In this work, we propose to enhance the label representations
with graph relational inductive bias constraints for the FGET
task. We implement this by a two-phase graph network: in the
phase I, we use GAT propagation on the instance-label sub-
graph to capture helpful instance features for the label repre-
sentations, and in the phase II, we exploit GCN propagation
on the label-label sub-graph to capture the dependency rela-
tionships among labels. We conduct experiments to evaluate
the effectiveness of the proposed method. As an extension,
our method can be easily migrated to a non-hierarchical la-
bel set as the graph is built according to label co-occurrence.
Also, the instance-to-label relational inductive bias constraint
is general and can be used in other classification tasks with
properly deforming.

Acknowledgments
This work is supported by the Strategic Priority Re-
search Program of Chinese Academy of Sciences, Grant
No.XDC02040400. The authors thank Jiawei Sheng from In-
stitute of Information Engineering, Chinese Academy of Sci-
ences, for his insightful and constructive discussions.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3848

References
[Ali et al., 2020] Muhammad Asif Ali, Yifang Sun, Bing Li,

and Wei Wang. Fine-grained named entity typing over dis-
tantly supervised data based on refined representations *.
In AAAI, 2020.

[Battaglia et al., 2018] Peter W. Battaglia, Jessica B.
Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinı́cius Flores Zambaldi, Mateusz Malinowski, Andrea
Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard,
Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R.
Allen, Charles Nash, Victoria Langston, Chris Dyer,
Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph
networks. CoRR, abs/1806.01261, 2018.

[Carlson et al., 2010] Andrew Carlson, Justin Betteridge,
Richard C. Wang, Estevam R. Hruschka, and Tom M.
Mitchell. Coupled semi-supervised learning for informa-
tion extraction. In WSDM ’10, 2010.

[Chen et al., 2019] Bo Chen, Xiaotao Gu, Yufeng Hu, Sil-
iang Tang, Guoping Hu, Yueting Zhuang, and Xiang Ren.
Improving distantly-supervised entity typing with compact
latent space clustering. In NAACL-HLT, 2019.

[Chen et al., 2020] Tongfei Chen, Yunmo Chen, and Ben-
jamin Van Durme. Hierarchical entity typing via multi-
level learning to rank. In ACL, 2020.

[Collins and Singer, 1999] Michael Collins and Yoram
Singer. Unsupervised models for named entity classifica-
tion. In EMNLP, 1999.

[Dai et al., 2019] Hongliang Dai, Donghong Du, Xin Li, and
Yangqiu Song. Improving fine-grained entity typing with
entity linking. In EMNLP/IJCNLP, 2019.

[Durrett and Klein, 2014] Greg Durrett and Dan Klein. A
joint model for entity analysis: Coreference, typing, and
linking. Transactions of the Association for Computation-
al Linguistics, 2014.

[Gillick et al., 2014] Daniel Gillick, Nevena Lazic, Kuzman
Ganchev, Jesse Kirchner, and David Huynh. Context-
dependent fine-grained entity type tagging. ArXiv, ab-
s/1412.1820, 2014.

[Jiang and Zhai, 2006] Jing Jiang and ChengXiang Zhai. Ex-
ploiting domain structure for named entity recognition. In
HLT-NAACL, 2006.

[Kipf and Welling, 2017] Thomas Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Lin and Ji, 2019] Ying Lin and Heng Ji. An attentive fine-
grained entity typing model with latent type representa-
tion. In EMNLP-IJCNLP, 2019.

[Ling and Weld, 2012] Xiao Ling and Daniel S. Weld. Fine-
grained entity recognition. In AAAI, 2012.

[López et al., 2019] Federico López, Benjamin Heinzerling,
and Michael Strube. Fine-grained entity typing in hyper-
bolic space. In RepL4NLP@ACL, 2019.

[Ratinov and Roth, 2009] Lev-Arie Ratinov and Dan Roth.
Design challenges and misconceptions in named entity
recognition. In CoNLL, 2009.

[Ren et al., 2016] Xiang Ren, Wenqi He, Meng Qu, Lifu
Huang, Heng Ji, and Jiawei Han. Afet: Automatic fine-
grained entity typing by hierarchical partial-label embed-
ding. In EMNLP, 2016.

[Shi et al., 2020] Haochen Shi, Siliang Tang, Xiaotao Gu,
Bo Chen, Zhigang Chen, Jian Shao, and Xiang Ren. Al-
leviate dataset shift problem in fine-grained entity typing
with virtual adversarial training. In IJCAI, 2020.

[Shimaoka et al., 2016] Sonse Shimaoka, Pontus Stenetorp,
Kentaro Inui, and Sebastian Riedel. An attentive neural
architecture for fine-grained entity type classification. In
AKBC@NAACL-HLT, 2016.

[Shimaoka et al., 2017] Sonse Shimaoka, Pontus Stenetorp,
Kentaro Inui, and Sebastian Riedel. Neural architectures
for fine-grained entity type classification. In Mirella La-
pata, Phil Blunsom, and Alexander Koller, editors, Pro-
ceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long
Papers, pages 1271–1280. Association for Computational
Linguistics, 2017.

[Velickovic et al., 2017] Petar Velickovic, Guillem Cucurul-
l, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In ICLR, 2017.

[Wang et al., 2019a] Xiang Wang, Xiangnan He, Yixin Cao,
Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In KDD, 2019.

[Wang et al., 2019b] Xiang Wang, Xiangnan He, Meng
Wang, Fuli Feng, and Tat-Seng Chua. Neural graph col-
laborative filtering. In SIGIR, 2019.

[Weischedel and Brunstein, 2005] Ralph Weischedel and A-
da Brunstein. Bbn pronoun coreference and entity type
corpus. In Linguistic Data Consortium, Philadelphia,
2005.

[Xiong et al., 2019] Wenhan Xiong, Jiawei Wu, Deren Lei,
Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang
Wang. Imposing label-relational inductive bias for ex-
tremely fine-grained entity typing. In NAACL-HLT, 2019.

[Xu and Barbosa, 2018] Peng Xu and Denilson Barbosa.
Neural fine-grained entity type classification with
hierarchy-aware loss. In NAACL-HLT, 2018.

[Yaghoobzadeh et al., 2016] Yadollah Yaghoobzadeh, Heike
Adel, and Hinrich Schutze. Noise mitigation for neural
entity typing and relation extraction. In EACL, 2016.

[Yavuz et al., 2016] Semih Yavuz, Izzeddin Gur, Yu Su,
Mudhakar Srivatsa, and Xifeng Yan. Improving semantic
parsing via answer type inference. In EMNLP, 2016.

[Zhang et al., 2020] Haoyu Zhang, Dingkun Long, Guang-
wei Xu, Muhua Zhu, Pengjun Xie, Fei Huang, and
Ji Wang. Learning with noise: Improving distantly-
supervised fine-grained entity typing via automatic rela-
beling. In IJCAI, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3849

	Introduction
	Related Work
	Graph Neural Networks
	Fine-Grained Entity Typing

	Methodology
	Mention Features Extractor
	Instance-Aware Label Encoder
	Pseudo-Label Generator

	Experiments
	Datasets
	Baselines
	Experimental Settings
	Result analysis

	Conclusion

